The system of equations of a single continuality physical field and the specific properties of the fields of aqueous media

Автор(и)

DOI:

https://doi.org/10.32347/2524-0021.2019.32.33-50

Ключові слова:

continuality fields, gravity, aquatic environments, the formation of living systems, electromag-netism, mass, unified field theory, capacitive properties, space-fields

Анотація

The idea of a biofield as a special form of the existence of matter leads to the need to once again address the problem of constructing a unified field theory. The property continuality of the gravitational field of planets is interesting in that there are continuality electromagnetic fields of ions in aqueous media and this creates a favorable background for the formation of elements of living matter in the aquatic environment of planets. Perhaps the continuality property of the gravitational field is a fundamental factor in the formation of living systems. The gravitational field of planets always exists, and water only on some of them. The field theory of gravity using the concepts of continuality can be constructed taking into account the field structure of the corpuscles and the field nature of the masses in the framework of the capacitive properties of space-field. The field theory of the structural particles of matter - a proton and an electron - has shown that the mass of these particles is completely determined by continuality electromagnetic fields. And this allows us to construct a theory of a single continuality physical field expressed by vector and scalar potentials, the physical meaning of which is disclosed in the work and is determined by the gravitational field.

Посилання

Simonov, I. N. (2004). Problemy yedinogo fizicheskogo polya i interpretatsiya poley bioob'yektov. Suchasni nformatsiyni ta yenergozbergayuchi tekhnologii zhittezabezpechennya lyudini. Kiev. [in Russian].

Simonov, I. N. (2018). On the continual gravitational field of aquatic environments in the context of the formation of self-organized structures (living matter). Problems of Water supply, Sewerage and Hydraulic, 29, 20-36. doi:10.32347/2524-0021.2018.29.20-36

Simonov, I. N. (2016). The formation of living matter in aqueous media: factors of gravity, hydrodynamics and continuum elec-trodynamics. Problems of Water supply, Sewerage and Hydraulic, 27, 338-345. [in Russian].

Simonov, I. N., & Trofimovich, V. V. (2015). Features of the formation of living matter and the influence of continuum electromagnetic fields of the environment. Environmental safety and environmental management, 18, 76-87. [in Russian].

Simonov, I. N., & Trofimovich, V. V. (2013). Forms of motion of living matter as a subject of fundamental research in ecology. Environmental safety and environmental management, 12, 114-122. [in Russian].

Simonov, I. N., & Trofimovich, V. V. (2011). The modern interpretation of ecology as a science in the context of the study of the forms of motion of living matter. Environmental safety and environmental management, 8, 166-175. [in Russian].

Simonov, I. N. (2013). On the field concept of matter and the possible mechanism of interaction between living matter and aqueous media. Problems of Water supply, Sewerage and Hydraulic, 21, 44-57. [in Russian].

Simonov, I. N. (2016). The dynamic architecture of the structural particles of matter: matter, self-consistent systems of aqueous media. Problems of Water supply, Sewerage and Hydraulic, 27, 318-338. [in Russian].

Levich, V. G. (1969). Kurs teoreticheskoy fiziki. Vol.1. Moskva: Nauka. [in Russian].

Feynman, R., Leighton, Z., & Sands, M. (1966). Feynmanovskiye lektsii po fizike: Vol.6. Elektrodinamika. Moscow: Mir. [in Russian].

Tamm, I. Ye., Smorodinsky, YA. A., & Kuznetsov, B. G. (Eds.). (1965). Einstein A. Collection of scientific papers in 4 volumes: Vol. 1. Work on the theory of relativity 1905-1920. (pp. 233-263). Moscow: Science. [in Russian].

Tamm, I. Ye., Smorodinsky, YA. A., & Kuznetsov, B. G. (Eds.). (1965). Einstein A. Collection of scientific papers in 4 volumes: Vol. 1. Work on the theory of relativity 1905-1920. Moscow: Science. (pp. 267-273). [in Russian].

Tamm, I. Ye., Smorodinsky, YA. A., & Kuznetsov B. G. (Eds.). (1966). Einstein A. Collection of scientific papers in 4 volumes: Vol. 2. Relativity Theory 1921-1955. Moscow: Science. (pp. 286-306). [in Russian].

Tamm, I. Ye., Smorodinsky, YA. A., & Kuznetsov, B. G. (Eds.). (1966). Einstein A. Collection of scientific papers in 4 volumes. Vol. 2. Relativity Theory 1921-1955. Moscow: Science. (pp. 719–731). [in Russian].

Logunov, A. A. (2001). Teoriya gravitatsionnogo polya. Moskva: Nauka. [in Russian].

Simonov, I. N. (1978). Osobennosti postanovki zadachi o raspredelenii samosoglasovannogo polya v oblasti ob'yemnogo svobodnogo zaryada (dvoynogo elektricheskogo sloya). Elektrokhimiya, 15(2), 230. [in Russian].

Simonov, I. N. (1981). O peremennom samosoglasovannom pole dvoynogo elektricheskogo sloya. Elektrokhimiya, 17(3), 476. [in Russian].

Simonov, I. N. (1982). O samosoglaso-vannom pole v dvoynom elektricheskom sloye. Ukr. khim. zhurn., 48 (9), 929-933. [in Russian].

Simonov, I. N. (1984). O magnitnykh svoystvakh rastvorov elektrolitov i dispersnykh sistem. Magnitnaya gidrodinamika, 1, 76-82. [in Russian].

Simonov, I. N. (1986). O raspredelenii elektricheskogo polya v samosoglasovannykh dinamicheskikh sistemakh (dvoynom elektricheskom sloye). Teoreticheskaya elektrotekhnika, 40, 74-83. [in Russian].

Simonov, I. N. (1988). Dvoynoy elektricheskiy sloy kak model' samosoglasovannykh korotkodeystvuyushchikh poley dinamicheskikh sistem. Teoreticheskaya elektrotekhnika, 44, 20-27. [in Russian].

Simonov, I. M., & Zahray, YA. M. (1992). Samosoglasovannyye ionnyye sistemy. Kyiv.: Vyssh. Shk. [in Russian].

Simonov, I. N. (2001). Kontinual'naya elektrodinamika. K.: Ukr INTEI. [in Russian].

Simonov, I. M., & Zahray, YA. M. (1994). Kontynualʹna teoriya polya i fizyko-khimiya bahatokomponentnykh system. Visti Akademiyi inzhenernykh nauk Ukrayiny, 2, 113-128. [in Ukrainian].

Simonov, I. N. (2019). On a single continuous gravitational-electromagnetic field. Problems of Water supply, Sewerage and Hydraulic, 31, 35-51. doi:10.32347/2524-0021.2019.31.35-51

Maksvell, Dzh. Kl. (1989). Traktat ob elektrichestve i magnetizme. T.1. Moskva: Nauka. 415. [in Russian].

Tamm, I. Ye., Smorodinsky, YA. A., & Kuznetsov, B. G. (Eds.). (1966). Einstein A. Collection of scientific papers in 4 volumes: Vol. 2. Relativity Theory 1921-1955. Moscow: Science. (pp. 744-759). [in Russian].

Sivukhin, D. V. (1983). Obshchiy kurs fiziki. Vol. 3. Elektrichestvo. Moskva: Nauka. [in Russian].

Simonov, I. N. (2012). Field concept of nonlocal self-consistency of water systems. Problems of Water supply, Sewerage and Hydraulic, 18, 112-122. [in Russian].

Simonov, I. N. (2012). Field concept of the formation of a self-consistent non-local field on inhomogeneities in an open water system. Problems of Water supply, Sewerage and Hydraulic, 20, 15-31. [in Russian].

Tamm, I. Ye., Smorodinsky, YA. A., & Kuznetsov, B. G. (Eds.). (1967). Einstein A. Collection of scientific papers in 4 volumes: Vol. 4. Physics and reality. Moscow: Science. (pp. 294-315). [in Russian].

Landau, L. D., & Lifshits, E. M. (1967). Teoriya polya. Moskva: Nauka. [in Russian].

Simonov, I. N. (2008). Kontinual'naya teoriya samosoglasovannykh sistem. K.: Kiyevskiy universitet. [in Russian].

##submission.downloads##

Опубліковано

2019-12-20

Як цитувати

Simonov, I. (2019). The system of equations of a single continuality physical field and the specific properties of the fields of aqueous media. Проблеми водопостачання, водовідведення та гідравліки, (32), 33–50. https://doi.org/10.32347/2524-0021.2019.32.33-50