Research of the mineral complex and opportunities using basalts and tuffs of ivandodolinsky quarry of the Rivne region in watertreatmant

Автор(и)

DOI:

https://doi.org/10.32347/2524-0021.2018.30.36-47

Ключові слова:

basalt, tuff, sorption, manganese, pH, acid water, groundwater

Анотація

Mineral composition of basalts and red-colored tuffs of Ivanodolinsky quarry of Rivne region is investigated. Water-purifying properties of dispersed basalts have not yet been investigated. There are significant prospects in this direction. It was established that mineralization of basalts is andesine, (93%) with small part of saponite (7 %) and tuffs consist of saponite (56%) and hematite (17%). The structure of each rock includes aluminosilicates, which possess ion-exchange properties.

It is known that acidic water (pH <6.5-7) without pre-treatment for drinking water needs special treatment. Transport by water supply systems is not possible as it does not meet the requirements of the State Sanitary. There are high concentrations of heavy metals ions in acidic groundwater. They are one of the most dangerous pollutants in the groundwater.

The mineral composition of the basalts and tuffs of the Ivanodolinsky deposit of the Rivne region is investigated. The questions of possibilities and using dispersed basalts and tuffs of Ivanodolinsky deposit of Rivne region for treatment of water intended for consumption. Reducing the acidity of water can do tuff and basalt. The highest efficiency of the extraction of ions Mn2+ showed red-colored tuff.

Посилання

Michelб, M. M., Siwiecб, T., Reczekб, L., & Weredaб, N. (2015). Odkwaszanie wody z wykorzystaniem melafiru, dolomitu i hydrolitu. Instal, 362(5), 56-59.

Bryndzia, I.V., Hrubinko, V.V., (2014). Sezonna dynamika vmistu vazhkykh metaliv u vodi kolodiaziv na terytorii Prykarpattia. Biolohichni systemy, 2(6), 197-204. [in Ukrainian].

Dmitrenko, Yu. A., Mamchenko, A. V., Shpilevaya, N. I., (2012). Estimation of Saponite Sorptive Properties with Regard to Fluoride Ions. Journal of Water Chemistry and Technology, 34(6), 271-276. doi:10.3103/s1063455x12060045

Hanziuk, A. Ya., (2010). Doslidzhennia adsorbtsiinykh vlastyvostei saponitu, modyfikovanoho kationamy bahatovalentnykh metaliv. Visnyk Khmelnytskoho natsionalnoho universytetu, 1, 230-235. [in Ukrainian].

Huliieva, N. M. (2014). Khimichnyi analiz ta fizychni vlastyvosti pryrodnoho mineralu — saponitu. Mizhvuzivskyi zbirnyk «Naukovi notatky», 44, 78-82. [in Ukrainian].

Goncharuk, V. V. (2010). Khimiya i Tekhnologiya Vody, 32 (5), 463-512.

Tsymbaliuk, V. V., Voloshchuk, A. H., Kobasa, I. M., (2011). Sorbtsiia yoniv vazhkykh metaliv na kyslotno-modyfikovanykh zrazkakh bazaltovoho tufu. Visnyk Chernivetskoho universytetu. Seriia: Khimiia, 555, 84-88. [in Ukrainian].

Spivak, V. V., Astrelin, I. M., (2010). Adsorbtsiia yoniv vazhkykh metaliv pryrodnymy ta modyfikovanymy bentanoidamy. Visn. NTU “KhPI”, 11, 117-127. [in Ukrainian].

K. Frey (Ed.) (1985). Myneralohycheskaia entsyklopedyia. Lvov. 512. [in Russian].

Melnychuk, V. H., Melnychuk, H. V, Polishchuk, A. M., (2016). Zastosuvannia tseolit-smektytovykh tufiv Volyno-Podillia u ekolohichno-chystomu vyrobnytstvi. Zapysky Ukrainskoho mineralohichnoho tovarystva, 13, 83-87. [in Ukrainian].

Shcherbakov, Y. (2005). Petrolohyia Ukraynskoho shchyta. Lvov. 366. [in Russian].

Michel, M. M. (2011). Charakterystyka chalcedonitu ze złoża Teofilów pod kątem możliwości wykorzystania w technologii uzdatniania wody i oczyszczania ścieków. Gosp. Sur. Min., 27, 49-67.

Quast, K. (2012). Influence of 25% Goethite on the Surface Chemistry of Hematite. International Journal of Minig Engineering and Mineral Processing, 1(2), 62-68. doi:10.5923/j.mining.20120102.07

Madigan, C., Leong, Y.K. and Ong, B.C. (2009). Surface and Rheological Properties of as-received Colloidal Goethite (α-FeOOH) suspensions: pH and Polyethylenimine Effects. International Journal of Mineral Processing, 93, 41-47. doi:10.1016/j.minpro.2009.05.005

Cwiertny, D.M., et al. (2008). Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: reaction of Fe(II) with goethite. Geochimica Et Cosmochimica Acta, 72(5), 1365-1380. doi:10.1016/j.gca.2007.12.018

Quast, K. (2006). Flotation of Hematite using C6-C18 Saturated Fatty Acids. Minerals Engineering, 19(6-8), 582. doi:10.1016/j.mineng.2005.09.010

Putraa, E. K., Pranowo, R., Sunarso, J., Indraswatia, N., Ismadjia, S., (2009). Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research, 43(9), 2419-2430. doi:10.1016/j.watres.2009.02.039

Orfao, J. J. M., Silva, A. I. M., Pereira, J. C. V., Barata, S. A., Fonseca, I. M., Faria, P. C. C., Pereira, M. F. R., (2006). Adsorption of reactive dye on chemically modified activated carbon – influence of pH. Journal of Colloid and Interface Science, 296(2), 480-489. doi:10.1016/j.jcis.2005.09.063

Makosz, E. (2015). Zastosowanie syntetycznego analcymu do usuwania metali ciężkich z roztworów wodnych. Uniwersytet Zielonogórski. Zeszyty Naukowe, 158, 59-65.

Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C., Xie, G. X., et al. (2012). Use of Iron Oxide Nanomaterials in Wastewater Treatment. A Review. Sci. Total Environ., 424, 1-10. doi:10.1016/j.scitotenv.2012.02.023

Miyoshi, Y., Ishibashi, J., Faure, K., Maeto, K., Matsukura, S., Omura, A., Shimada, K., Sato, H., Sakamoto, T., Uehara, S., Chiba, H., Yamanaka, T., (2013). Mg-rich clay mineral formation associated with marine shallow-water hydrothermal activity in an arc volcanic caldera setting. Chemical Geology, 355, 28-44. doi:10.1016/j.chemgeo.2013.05.033

##submission.downloads##

Опубліковано

2018-12-27