DOI: https://doi.org/10.32347/2524-0021.2018.29.20-36

About continual gravitational field aqueous medium in the context of formation of self-organized structures (living matter)

Igor Simonov

Анотація


On the basis of A.Einstein's hypotheses, G. Cavendish's experiments, the Faraday – Maxwell approach, the works of modern physicists devoted to the problems of Cosmos, and my own early studies of the uses of the equations of continuous electrodynamics in this article was received a new equation of the continuous gravitational field. Calculations of the values of the gravitational field near the surface of the Earth coincide with the results of calculations based on the classical (Newtonian) law. The deviation in the calculated dependence is observed at distances of more than ten radii of the Earth and at the same time is the alternating. Perhaps it will be important in the exploration of deep space. Attention is drawn that it is of the continualy electromagnetic fields of ions of aqueous media that are the harmonizing system that is necessary for the formation of elements of living matter. In this paper, the idea is developed that the interaction of the continual electromagnetic fields and the continual gravitational field has a decisive influence on the formation of living matter.


Ключові слова


water environments; continual fields; gravity; electromagnetism; formation; living matter; self-organization

Повний текст:

PDF

Посилання


Simonov I.N. (2016). Formation of living matter in water media: factors gravity, hydrodynamics and of the continual electrodynamics. Problems of Water supply, Sewerage and Hydraulic, 27. 338-345. [in Russian].

Simonov I.N., & Trofimovich V.V. (2015) Osobennosti formirovaniya zhivoy materii i vliyaniye kontinual'nykh elektromagnitnykh poley okruzhayushchey sredy. Ecological safety and natural resources. 18. 76–87. [in Russian].

Simonov I.N., & Trofimovich V.V. (2013). Formy dvizheniya zhivoy materii kak predmet fundamental'nykh issledovaniy v ekologii. Ecological safety and natural resources. 12. 114-122. [in Russian].

Simonov I.N., Trofimovich V.V. (2011). Sovremennaya interpretatsiya ekologii kak nauki v kontekste issledovaniya form dvizheniya zhivoy materii. Ecological safety and natural resources. 8. 166–175. [in Russian].

Simonov I.N. (2013). About the field concept of substance and the possible mechanism of interaction of alive matter and water environment. Problems of Water supply, Sewerage and Hydraulic, 21. 44-57. [in Russian].

Logunov A.A. (2001). Teoriya gravitatsionnogo polya. Moscow: Science. 238. [in Russian].

Logunov A.A., Mestvirishvili M.A. (1997). Tenzor energii-impul'sa materii kak istochnik gravitatsionnogo polya. ТМF, 110(1).5-24. [in Russian].

Logunov A.A. (2004). Teoriya klassicheskogo gravitatsionnogo polya: Preprint IHEP 41. Protvino. 10. [in Russian].

Morozov, V. B. (2018). Einstein’s Equation. Parana Journal of Science and Education (PJSE) 4(1). Retrieved from URL: https://sites.google.com/site/pjsciencea/2018/february-v-4-n-2.

Tamm, I.Y., Smorodinsky, YA.A., & Kuznetsov, B.G. et al. (1966). Einstein A. Collection of scientific papers in 4 volumes. Tom 2. Work on the theory of relativity 1921-1955. Moscow: Science. 2. 744-759. [in Russian].

Tamm I.Y., Smorodinsky YA.A., & Kuznetsov B.G. et al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. 202-216. [in Russian].

Tamm I.Y., Smorodinsky Y.A., Kuznetsov B.G., et al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. 227-266. [in Russian].

Tamm. I.Y., Smorodinsky. Y.A. & Kuznetsov. B.G. et al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. 267-272. [in Russian].

Tamm. I.Y., Smorodinsky. Y.A., & Kuznetsov. B.G. et al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. С.273-298. [in Russian].

Tamm. I.Y., Smorodinsky. Y.A. & Kuznetsov B.G. et al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. 299-304. [in Russian].

Tamm. I.Y., Smorodinsky YA.A., Kuznetsov B.G., & et al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. 542-504. [in Russian].

Simonov, I.N. (2016). The dynamic architecture of the structural particles of matter way nature's to self-organized of the systems aquatic environments. Problemy vodopostachannia, vodovidvedennia i hidravliky, 27. С.318–338. [in Russian].

Simonov, I.N. (2001). Kontinual'naya elektrodinamika. Kiev: Ukrintei. 252. [in Russian].

Simonov, I.N. & Zagray, I.M. (1992). Self-consistent ionic systems. Kiev: High School. 164. [in Russian].

Simonov, I.N. (2008). Continual theory of self-consistent systems. Kiev: Kiev University Publishing and Printing Center. 311. [in Russian].

Simonov I.N. (2014). Field Theory of Structural Particles of Matter and New Aspects of Ecology. Ecological safety and natural resources.14. 154–167. [in Russian].

Debye P., Huckel E. (1923). Phys. Zs. 24 185.

Mayer, J. & Goeppert-Mayer, M. (1980). Statistical Physics. Moscow: Mir. 540. [in Russian].

Newman, J. (1977). Electrochemical systems. Moscow: Mir. 463. [in Russian].

Panovsky V., & Phillips M. (1963). Classical Electrodynamics. Moscow: Gos.izd.fiz.-mat. lit. 432. [in Russian].

Tamm, I.Y. (1976). Fundamentals of the theory of electricity. Moscow: Science. 616. [in Russian].

Simonov, I.N. (1978). Features of the formulation of the problem of the distribution of a self-consistent field in the region of a bulk free charge (electric double layer). Elektrokhimiya. 15(2). 230. [in Russian].

Simonov, I.N. (1981). On the alternating self-consistent field of electric double layer. Elektrokhimiya. 17(3) .476. [in Russian].

Simonov, I.N. (1982). On the self-consistent field in a double electric layer. Ukr. chemical journals. 48(9). 929 – 933. [in Russian].

Simonov, I.N. (1984). On the magnetic properties of electrolyte solutions and disperse systems // Magnetic hydrodynamics. 1. 76 – 82. [in Russian].

Simonov, I.N. (1986). On the distribution of the electric field in self-consistent dynamical systems (electric double layer). Theoretical Electrical Engineering. 40. 74 – 83. [in Russian].

Simonov, I.N. (1988). Electric double layer as a model of self-consistent short-range fields of dynamic systems. Theoretical Electrical Engineering. 44. 20 – 27. [in Russian].

Simonov, I.N. (1992). Solution of the field equations for the magnetic component of the electrical double layer. Theoretical Electrical Engineering. 51. 131 – 134. [in Russian].

Landau, L.D., Lifshits, E.M. (1967). Field theory. Moscow: Science. 458. [in Russian].

Kaganov, M.I., Feynman, R. & Leighton, M. (1966). The Feynman Lectures on Physics, Physics of Physics, UFN. 89. 327–328. doi: 10.3367/UFNr.0089.196606j.0327

Fock, V.A. (1961). The theory of space, time, and agony. Moscow: Gos. izd.fiz.-mat.lit. 564 с. [in Russian].

Tamm, I.Y., Smorodinsky, Y.A. & Kuznetsov, B.G. et. al. (1965). Einstein A. Collection of scientific papers in 4 volumes. Tom 1. Work on the theory of relativity 1905-1920. Moscow: Science. 1. 223-226. [in Russian].


Посилання

  • Поки немає зовнішніх посилань.