
Проблеми водопостачання, водовідведення та гідравліки, вип.52, 2025 

16 

 
 
 
 

ЕФЕКТИВНІСТЬ БІОЛОГІЧНОГО ОЧИЩЕННЯ СТІЧНИХ ВОД З ВИ-
КОРИСТАННЯМ ІММОБІЛІЗОВАНИХ МІКРООРГАНІЗМІВ НА НОСІЯХ 

РІЗНИХ ТИПІВ  
 

Андрій Гриневич1, Лариса Саблій2, Вероніка Жукова3, Ірина Ляшок4 
 

1,2,3 Національний технічний університет України  
«Київський політехнічний інститут імені Ігоря Сікорського» 

37, проспект Берестейський, м. Київ, 03056, Україна 
4 Київський національний університет технологій та дизайну 

2, вул. Мала Шияновська, Київ, 01011, Україна 
1 abarabaha@gmail.com, orcid.org/0009-0009-3963-838X 

2 доктор технічних наук, larisasabliy@ukr.net, orcid.org/0000-0003-4217-3535 
3 кандидат технічних наук, zhukova.veronika@lll.kpi.ua, orcid.org/0000-0002-8296-7519 

4 кандидат технічних наук, lyashok.io@knutd.edu.ua, orcid.org/0000-0001-9171-1075 
 

DOI: 10.32347/2524-0021.2025.52.16-23 
 

Анотація. У роботі досліджено ефективність біотехнології очищення стічних вод з викорис-

танням іммобілізованих мікроорганізмів, формування на полімерних носіях біологічної плівки 

та її здатність забезпечувати очищення стічних вод від органічних забруднюючих речовин. 

Визначали зміну показника хімічного споживання кисню за різної тривалості очищення: 6, 8 і 

12 год. Після нарощування біомаси з використанням активного мулу протягом 14 діб носії 

переносили до проточних біореакторів та визначали зміну концентрації органічних речовин 

залежно від типу носія. Встановлено, що за тривалості 8 год усі носії забезпечували досяг-

нення гранично допустимих концентрацій за ХСК для скиду стічних вод у водні об’єкти. Най-

вищу ефективність мав носій «Соти» - 80–87% зниження ХСК за початкових значень - 500, 

200 та 80 мг/дм3. Використання носіїв «Йорж» і «Хвиля» показало ефект очищення за ХСК – 

50-77%, залежно від умов досліду. Виявлено, що на носій «Йорж» було іммобілізовано найбі-

льшу біомасу – до 390 мг/дм3, однак надмірна товщина біоплівки обмежувала дифузію кисню 

та знижувала інтенсивність окиснення. Отримані результати показали високу ефективність бі-

ологічного очищення стічних вод з використанням іммобілізованих на носіях мікроорганізмів 

– до 90%, проте свідчать про суттєвий вплив на процес очищення конструкції носія та важли-

вість раціонального вибору типу носія. 

Ключові слова: біотехнологія, мікроорганізми, біоплівка, активний мул, стічні води,  очи-

щення стічних вод, іммобілізація, полімерні носії. 

 

ВСТУП 

Забруднення водних ресурсів біогенними 

елементами залишається однією з ключових 

екологічних проблем, що вимагає впрова-

дження ефективних технологій очищення 

стічних вод, особливо для систем з нерівно-

мірним гідравлічним навантаженням (при-

ватні підприємства, об’єкти промислового 

та цивільного будівництва, тощо). Одним з 

найбільш перспективних рішень для таких 

умов є використання біотехнологій із засто-

суванням прикріпленої біомаси, де ключо-

вим елементом, що, в основному, буде ви-

значати ефективність процесу, виступає но-

сій біологічної плівки. 

Процес іммобілізації мікроорганізмів та 

формування стійкої біоплівки залежить від 

комплексу факторів як біотичних, так і 
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абіотичних, серед яких визначальними є фі-

зико-хімічні властивості поверхні носія, 

його шорсткість, пористість та матеріал [1-

3]. Важливу роль відіграють гідрофільність 

і заряд поверхні, які безпосередньо вплива-

ють на швидкість адгезії мікроорганізмів [4-

5]. За матеріалом існуючі носії класифіку-

ють на неорганічні, інертні органічні та реа-

ктивні органічні [6]. 

Неорганічні матеріали (цеоліт, кераміка, 

вулканічні породи) характеризуються висо-

кою механічною стійкістю та значною пито-

мою поверхнею (300–1000 м2/м3 для цеолі-

тів) [7], що забезпечує резистентність біоце-

нозу до шокових навантажень [8]. Завдяки 

йонообмінним властивостям цеоліти демон-

струють високу ефективність (понад 90%) 

видалення із води амонійного азоту [9]. 

Проте, суттєвими недоліками неорганічних 

носіїв є повільне заростання біоплівкою, ни-

зька проникність та схильність до кольмата-

ції, що частково вирішують використанням 

їх модифікованих форм [10]. 

Альтернативою виступають реактивні 

органічні матеріали (альгінат, рослинна си-

ровина), які є біосумісними та здатні слугу-

вати додатковим джерелом вуглецю. Однак 

їх широке застосування обмежується низь-

кою механічною міцністю, швидкою біоде-

градацією та нестабільністю процесу очи-

щення [11]. 

На сьогодні найбільш поширеними на 

практиці є носії з інертних органічних полі-

мерів (поліетилен, поліпропілен, поліуре-

тан). Для них характерні довговічність, стій-

кість до біодеградації та розвинену струк-

туру [12]. Поліетиленові носії (HDPE) є ста-

ндартом для MBBR-систем, а пористі поліу-

ретанові матеріали забезпечують екстрема-

льно високу площу поверхні (до 3000 м2/м3) 

[13]. Головним недоліком синтетичних полі-

мерів є їхня гідрофобність, що ускладнює 

первинне прикріплення біомаси [14]. Для 

покращення характеристик розробляють рі-

зні модифікації: гідрофільно модифіковані 

поверхні та магнітні носії, проте їх впрова-

дження часто стримують економічні чин-

ники [15, 16]. 

Окрім фізико-хімічних властивостей ма-

теріалу, критичний вплив на ефективність 

біореактора має конфігурація носія, яка ви-

значає гідродинамічні та аеродинамічні 

умови в біореакторі, подачу і розподіл води 

та повітря, перемішування та його інтенсив-

ність, масоперенос кисню та субстратів 

тощо [17]. Наявність пор та їх структура не 

лише збільшують площу контакту, але й за-

хищають біоплівку від механічного зсуву, 

створюючи умови для симультанного пере-

бігу аеробних та анаеробних процесів. Оп-

тимальна зовнішня поверхня носія повинна 

сприяти формуванню рівномірної активної 

біоплівки без дифузійних обмежень [18-19]. 

На сьогодні ринок пропонує значне різ-

номаніття полімерних носіїв різної конфігу-

рації, починаючи від простих гранульова-

них або циліндричних форм і закінчуючи 

складними просторовими структурами з ро-

звиненою поверхнею [20]. Проте така варіа-

тивність створює проблему відсутності уні-

версальних критеріїв стандартизації, що 

значно ускладнює вибір оптимального рі-

шення та коректне порівняння ефективності 

різних форм між собою [21]. 

Враховуючи вищезазначене, існує нага-

льна потреба у систематизації даних та про-

веденні порівняльного аналізу роботи носіїв 

різних типів.  

Мета дослідження. Визначити і порів-

няти ефективність очищення стічних вод від 

органічних речовин з використанням іммо-

білізованих мікроорганізмів на носіях різ-

них типів у проточних умовах. 

Дослідження були виконані колективом 

кафедри біоенергетики, біоінформатики та 

екобіотехнології під керівництвом д.т.н. 

проф. Саблій Л.А., відповідно до господар-

ського договору  між КПІ ім. Ігоря Сікорсь-

кого і ТОВ «ФІБЕРІКА» у 2025 році. 
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Рис. 1. Носії для іммобілізації мікроорганізмів: «Соти», «Хвиля», «Йорж» (зліва направо) 

Fig. 1. Carriers for microorganism immobilization: "Honeycomb", "Wave", "Brush" (left to right) 

 

МАТЕРІАЛИ ТА МЕТОДИ  

Для проведення експериментальних дос-

ліджень використовували носії для іммобі-

лізації мікроорганізмів трьох зразків різної 

конструкції, умовно названі «Хвиля», 

«Соти» та «Йорж» (рис. 1).  

Дослідження виконували на двох експе-

риментальних установках, кожна склада-

лася з трьох ідентичних біореакторів діаме-

тром 19,3 см та висотою 20 см. Робочий 

об’єм рідини в кожному реакторі становив 

5 дм3, висота води – 17 см. Перед початком 

експерименту було проведено гідравлічні 

випробування для перевірки герметичності 

біореакторів та працездатності обладнання 

(насосів, аераторів, компресорів тощо). 

Іммобілізацію біомаси на носіях прово-

дили з використанням активного мулу, віді-

браного на Бортницькій станції аерації (м. 

Київ), яка здійснює очищення міських стіч-

них вод Києва та прилеглих населених пун-

ктів. Процес нарощування біомаси на пове-

рхні носіїв тривав упродовж 14 діб, при 

цьому в усіх біореакторах забезпечували од-

накові умови культивування мікроорганіз-

мів. Насичення води киснем та перемішу-

вання середовища в аеробних умовах здійс-

нювали шляхом дрібнобульбашкової аерації 

з використанням компресорів Resun AIR 

3000. 

Аналіз характеристик біологічної плівки 

та активного мулу проводили з використан-

ням стандартних методів та методик. Показ-

ник хімічного споживання кисню (ХСК) ви-

значали прискореним біхроматним мето-

дом. Для визначення концентрації (дози) 

активного мулу використовували методику 

аналізу завислих речовин гравіметричним 

методом. Зважування зразків виконували на 

аналітичних терезах OHAUS Pioneer 

РА214С та OHAUS Scout Pro, а висушу-

вання до постійної маси здійснювали у су-

шильній шафі Labexpert. 

РЕЗУЛЬТАТИ І ОБГОВОРЕННЯ 

Ефективність очищення стічної води 

від органічних речовин з використанням 

носія типу «Соти» 

Після завершення формування біоплівки 

(14 діб) носії помістили в біореактори експе-

риментальної установки для проведення до-

сліджень на модельних розчинах. Регулю-

вання тривалості перебування стічної води в 

біореакторах (6, 8 та 12 годин) забезпечу-

вали шляхом зміни подачі периферійних пе-

ристальтичних насосів-дозаторів. Дослі-

дження аеробного процесу видалення орга-

нічних речовин з води за показником ХСК 

проводили впродовж 15 діб. 

Аналіз величини біомаси на носіях пока-

зав пряму залежність між концентрацією ор-

ганічних забруднень та кількістю іммобілі-

зованої біоплівки. Концентрація біомаси за 

сухою речовиною (у перерахунку на оди-

ницю об’єму води, що займав носій у біоре-

акторі) становила 219, 133 та 86 мг/дм3 для 

біореакторів 1, 2 та 3, відповідно. Візуально 

зафіксовано найбільш інтенсивне оброс-

тання носія у модельному розчині МР1а (по-

чаткове ХСК - 500 мг/дм3), тоді як зі знижен-

ням навантаження за органічними речови-

нами величина біомаси зменшувалась. 
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                                       а                                                                             б 

Рис. 2. Залежність ХСК від тривалості очищення різних модельних розчинів (а) та 

ефективність очищення за ХСК за тривалості 6, 8, 12 год (б) у біореакторах з носієм 

«Соти» в аеробних умовах 

Fig. 2. Dependence of COD on treatment duration for different model solutions (a) and COD removal 

efficiency at 6, 8, and 12 h duration (b) in bioreactors with the "Honeycomb" carrier under 

aerobic conditions. 

З рис. 2, а очевидно, що найбільше абсо-

лютне зниження ХСК зафіксовано для роз-

чину МР1а (з початковим ХСКпоч – 

500 мг/дм3), найменше – для МР3а (з ХСКпоч 

- 80 мг/дм3) за тривалості аеробного процесу 

6 годин. Встановлено, що вже за такої три-

валості кінцеві значення ХСК для всіх моде-

льних розчинів не перевищували гранично 

допустиму концентрацію для скиду стічних 

вод у природну водойми (ГДК - 125 мг/дм3). 

Як показали результати, наведені на 

рис. 2, б, подальше збільшення тривалості 

очищення понад 6 годин не мало значного 

впливу на ХСК очищеної води, проте для за-

безпечення стабільності показників та дося-

гнення ефективності очищення на рівні          

80–87% раціональною рекомендованою 

тривалістю обрано 8 годин. 

Ефективність очищення стічної води 

від органічних речовин з використанням 

носія типу «Йорж» 

Аналогічний цикл досліджень впродовж 

15 діб було проведено для носія «Йорж». 

Характер формування біоплівки мав схожу 

тенденцію - максимальне накопичення 

іммобілізованої біомаси спостерігали у реа-

кторі з модельним розчином МР1а (почат-

кове ХСК - 500 мг/дм3), що підтверджує ві-

зуальний аналіз (рис. 3, a). Зі зменшенням 

концентрації субстрату інтенсивність біооб-

ростання знижувалася. 

 

  
                                       а                                                                             б 

Рис. 3. Залежність ХСК від тривалості очищення різних модельних розчинів (а) та 

ефективність очищення за ХСК за тривалості 6, 8, 12 год (б) у біореакторах з носієм 

«Йорж» в аеробних умовах 

Fig. 3. Dependence of COD on treatment duration for different model solutions (a) and COD removal 

efficiency at 6, 8, and 12 h duration (b) in bioreactors with the "Brush" carrier under aerobic 

conditions 
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Рис. 4. Залежність ХСК від тривалості очищення різних модельних розчинів (а) та 

ефективність очищення за ХСК за тривалості 6, 8, 12 год (б) у біореакторах  з носієм 

«Хвиля» в аеробних умовах 

Fig. 4. Dependence of COD on treatment duration for different model solutions (a) and COD removal 

efficiency at 6, 8, and 12 h duration (b) in bioreactors with the "Wave" carrier under aerobic 

conditions 

Аналіз кінетики очищення (рис. 3) свід-

чить про поступове зменшення концентрації 

органічних речовин за ХСК зі збільшенням 

тривалості. Для розчину з високим ХСК 

(МР1а, 500 мг/дм3) за 6 годин обробки ХСК 

знизилося лише до 180 мг/дм3, що переви-

щує нормативне значення ГДК. Збільшення 

тривалості процесу очищення з 6 до 8 годин 

призвело до сповільнення зниження показ-

ника ХСК, проте саме за тривалості 8 годин 

досягається необхідна якість очищення за 

даним показником. 

Для розчинів з меншим ХСКпоч (МР2а – 

200 мг/дм3 та МР3а – 80 мг/дм3) нормативні 

показники досягаються вже за 6 годин. Од-

нак, враховуючи необхідність уніфікації 

процесу для стоків з високим вмістом забру-

днень (МР1а), як робочу тривалість для но-

сія «Йорж» також обрано 8 годин. 

Ефективність очищення стічної води 

від органічних речовин з використанням 

носія типу «Хвиля» 

На третьому етапі досліджень використо-

вували носій «Хвиля». Визначена концент-

рація прикріпленої біомаси (за сухою речо-

виною) у біореакторах 1, 2 та 3 становила 

240, 176 та 95 мг/дм3, відповідно, що коре-

лює з концентрацією органічних речовин у 

розчині за показником ХСК. 

Графіки, зображені на рис. 4, показують, 

що для висококонцентрованого розчину 

МР1а суттєве зменшення органічного забру-

днення за ХСК спостерігали протягом 

перших 8 годин з досягненням ХСК очище-

ної води у відповідності до нормативів ГДК. 

Подальше подовження процесу до 12 годин 

характеризується сповільненням процесу 

очищення. Для розчинів з середнім та низь-

ким ХСК (МР2а та МР3а) стабільне досяг-

нення необхідних показників якості води за 

ХСК спостерігали вже через 6 годин аероб-

ної обробки. 

ВИСНОВКИ ТА РЕКОМЕНДАЦІЇ 

За результатами експериментальних дос-

ліджень аеробного очищення стічних вод 

встановлено, що збільшення концентрації 

органічних забруднень сприяє інтенсивні-

шому наростанню біомаси на всіх типах но-

сіїв. Максимальну концентрацію іммобілі-

зованої біоплівки зафіксовано на носії конс-

трукції «Йорж» (до 390 мг/дм3), проте над-

мірна товщина біообростань призвела до ди-

фузійних обмежень кисню та зниження ефе-

ктивності процесу очищення стічних вод. 

Натомість носій «Соти» з меншою концент-

рацією біомаси (220 мг/дм3) забезпечив фо-

рмування тонкої активної біоплівки з опти-

мальним масопереносом, що дозволило до-

сягти найвищих показників видалення орга-

нічних забруднень. Зокрема, за тривалості 

процесу 8 годин ефективність очищення сті-

чних вод від органічних речовин за ХСК для 

носія «Соти» досягала 80–88% для всіх по-

чаткових величин ХСК, тоді як для носіїв 

«Йорж» і «Хвиля» цей показник не 
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перевищував 50–76%. Таким чином, най-

більш раціональним для використання в 

компактних очисних спорудах є носій плос-

кої конфігурації «Соти», який забезпечує 

найвищу якість очищеної води за показни-

ком ХСК та відповідність нормативним ви-

могам для безпечного відведення її у приро-

дні водойми. 
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Efficiency of biological wastewater treatment using immobilized microorganisms on different 

types of carriers 

 
Andrii Hrynevych, Larysa Sablii, Veronika Zhukova, Iryna Liashok 

 
Abstract. The paper investigates the efficiency of wastewater treatment biotechnology using 

immobilized microorganisms, the formation of biofilm on polymer carriers, and its ability to ensure 

the removal of organic pollutants from wastewater. Changes in the Chemical Oxygen Demand (COD) 

index were determined at different treatment durations: 6, 8, and 12 hours. After biomass cultivation 

using activated sludge for 14 days, the carriers were transferred to flow bioreactors, and the change 

in organic matter concentration was determined depending on the carrier type. It was established that 

with a duration of 8 hours, all carriers ensured the achievement of maximum permissible 

concentrations (MPC) for COD for discharging wastewater into water bodies. The "Honeycomb" 

carrier demonstrated the highest efficiency – 80–87% COD reduction at initial values of 500, 200, 

and 80 mg/dm³. The use of "Brush" and "Wave" carriers showed a COD treatment effect of 50–77%, 

depending on the experimental conditions. It was revealed that the largest amount of biomass was 

immobilized on the "Brush" carrier – up to 390 mg/dm3; however, the excessive biofilm thickness 

limited oxygen diffusion and reduced oxidation intensity. The obtained results showed high efficiency 

of biological wastewater treatment using microorganisms immobilized on carriers – up to 90%, but 

indicate a significant influence of the carrier design on the treatment process and the importance of a 

rational choice of carrier type. 

Keywords: biotechnology, microorganisms, biofilm, activated sludge, wastewater, wastewater 

treatment, immobilization, polymer carriers. 
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